

Requirements Engineering
Software EngineeringSoftware Engineering

Andreas Zeller • Saarland University

Waterfall Model
(1968)

Communication 
project initiation

requirements gathering

Planning
estimating 
scheduling 
tracking

Modeling
analysis 
design

Construction
code 
test

Deployment
delivery 
support
feedback

Communication
Communication 

project initiation
requirements gathering

Communication

How do we get there?

“Requirement”
Standard Glossary of Software Engineering Terminology 

(ANSI/IEEE Standard 610.12-1990)

1. A condition or capability needed by a user
to solve a problem or achieve an objective.

2. A condition or capability that must be met
or possessed by a system or system
component to satisfy a contract, standard,
specification, or other formally imposed
documents.

3. A documented representation of a
condition or capability as in (1) or (2).

A Software Crisis

Glass’ Law

Requirement deficiencies  
are the prime source 

of project failures.

“Requirements Analysis”
Standard Glossary of Software Engineering Terminology 

(ANSI/IEEE Standard 610.12-1990)

• The process of studying user needs to
arrive at a definition of system, hardware,
or software requirements.

• The process of studying and refining
system, hardware, or software
requirements.

Analysis vs Design

• Analysis = what the software should do

• Software functionality

• Software properties

• Design = how it should do it

Up-front RE

• “We must know [exactly] what to build
before we can build it”

• classical engineering viewpoint

• leads to waterfall process

• … but is this realistic for today’s systems?

In our Course

• Gather Requirements with few (≤ 3)
iterations

• Gather UI Design with several (≥ 3)
iterations

Topics in
Requirements Analysis

• Identify Stakeholders

• Elicit Requirements

• Identify Requirements

• Prototypes

Stakeholders

• Persons or organizations who…

• have a valid interest in the system

• are affected by the system

Stakeholders

• anyone who operates the system  
(normal and maintenance operators)

• anyone who benefits from the system
(functional, political, financial and social beneficiaries)

• anyone involved in purchasing or
procuring the system

Stakeholders

• organizations which regulate aspects of the
system 
(financial, safety, and other regulators)

• organizations responsible for systems which
interface with the system under design

• people or organizations opposed to the
system 
(negative stakeholders)

Elicit Requirements

• Interviews are the best way to elicit
requirements

• Explore requirements systematically

• Sounds simple – but is the hardest part!

Why is Elicitation hard?

• Problems of scope  
What is the boundary of the system? • What details are
actually required?

• Problems of understanding 
Users do not know what they want • don’t know what is
needed • have a poor understanding of their computing
environment • don’t have a full understanding of their
domain • omit “obvious” stuff • are ambiguous

• Problems of volatility 
Requirements change over time

Identify Requirements

• Types of requirements 
Functional requirements • Nonfunctional requirements •
Constraints

• Contract-style requirements

• Use cases (user stories)

Types of Requirements

Functional
Requirements

• An action the product must take to be
useful

The product shall allow to track
individual payments of coffee servings

Nonfunctional
Requirements

• A property or quality the product must have

The product shall be accessible in
multiple languages 

(such as German and English)

Constraints

• Global requirements – on the project or
the product

The product shall be available before
March 1st.

Constraints

• Global requirements frequently include
safety and security requirements

The product shall pose
no danger, risk, or injury to its users.

Contract Style

Contract Style

Classify product features as

• Must-have features 
“The product must conform to accessibility guidelines”

• May-have features 
“The product may eventually be voice-controlled”

• Must-not-have features 
“The product supports only one language”

Be explicit about must-not-have features!

Contract Style

• Provide a contract between sponsors and
developers

• Can run to hundreds of pages

• Abstract all requirements, with little
context

Contract Style

love it hate it

Use Case

• An actor is something that can act – a
person, a system, or an organization

• A scenario is a specific sequence of actions
and interactions between actors 
(where at least one actor is a system)

• A use case is a collection of related
scenarios – successful and failing ones

• Useful for clients as well as for developers

Actors and Goals

• What are the boundaries of the system?
Is it the software, hardware and software,
also the user, or a whole organization?

• Who are the primary actors – i.e., the
stakeholders?

• What are the goals of these actors?

• Describe how the system fulfills these
goals (including all exceptions)

Example: SafeHome

Initial Scenario
Use case: display camera views  
Actor: homeowner  
 
If I’m at a remote location, I can use any PC with
appropriate browser software to log on to the SafeHome
Web site. I enter my user ID and two levels of
passwords and, once I’m validated, I have access to all
the functionality. To access a specific camera view, I
select “surveillance” and then “select a camera”.
Alternatively, I can look at thumbnail snapshots from all
cameras by selecting “all cameras”. Once I choose a
camera, I select “view”…

Refined Scenario
Use case: display camera views  
Actor: homeowner

1. The homeowner logs on to the Web Site

2. The homeowner enters his/her user ID

3. The homeowner enters two passwords

4. The system displays all major function buttons

5. The homeowner selects “surveillance” button

6. The homeowner selects “Pick a camera”…

Alternative Interactions

• Can the actor take some other action at
this point?

• Is it possible that the actor encounters
some error condition? If so, which one?

• Is it possible that some other behavior is
encountered? If so, which one?

Exploring alternatives is the key  
to successful requirements analysis!

Full Use Case

Full Use Case

What we expect
1. A set of requirements  

contract style • ≤4 pages • safety and security are musts

2. A set of use cases  
Pressman style • ~10–20 pages

3. A GUI design  
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models 
covering all “must-have” and most “may-have” use cases

5. An executable prototype  
covering all “must-have” use cases

1. A set of requirements  
contract style • ≤4 pages

2. A set of use cases  
Pressman style • ~10–20 pages

3. A GUI design  
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models 
covering all “must-have” and most “may-have” use cases

5. An executable prototype  
covering all “must-have” use cases

What we expect

1. A set of requirements  
contract style • ≤4 pages

2. A set of use cases  
Pressman style • ~10–20 pages

3. A GUI design  
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models 
covering all “must-have” and most “may-have” use cases

5. An executable prototype  
covering all “must-have” use cases

What we expect

1. A set of requirements  
contract style • ≤4 pages

2. A set of use cases  
Pressman style • ~10–20 pages

3. A GUI design  
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models 
covering all “must-have” and most “may-have” use cases

5. An executable prototype  
covering all “must-have” use cases

What we expect

Pressman style • ~10–20 pages

3. A GUI design  
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models 
covering all “must-have” and most “may-have” use cases

5. An executable prototype  
covering all “must-have” use cases

What we expect

3. A GUI design  
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models 
covering all “must-have” and most “may-have” use cases

5. An executable prototype  
covering all “must-have” use cases

What we expect

What we expect

We will calibrate all contracts 
to result in similar effort  

across all projects

Martin Glinz, RE Guru, on Requirements Engineering

Summary
What we expect

1. A set of requirements  
contract style • ≤4 pages • safety and security are musts

2. A set of use cases  
Pressman style • ~10–20 pages

3. A GUI design  
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models 
covering all “must-have” and most “may-have” use cases

5. An executable prototype  
covering all “must-have” use cases

