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Communication

How do we get there?



“Requirement” 
Standard Glossary of Software Engineering Terminology 

(ANSI/IEEE Standard 610.12-1990)

1. A condition or capability needed by a user 
to solve a problem or achieve an objective.

2. A condition or capability that must be met 
or possessed by a system or system 
component to satisfy a contract, standard, 
specification, or other formally imposed 
documents.

3. A documented representation of a 
condition or capability as in (1) or (2).



A Software Crisis



Glass’ Law

Requirement deficiencies  
are the prime source 

of project failures.



“Requirements Analysis” 
Standard Glossary of Software Engineering Terminology 

(ANSI/IEEE Standard 610.12-1990)

•  The process of studying user needs to 
arrive at a definition of system, hardware, 
or software requirements. 

• The process of studying and refining 
system, hardware, or software 
requirements.



Analysis vs Design

• Analysis = what the software should do

• Software functionality

• Software properties

• Design = how it should do it



Up-front RE

• “We must know [exactly] what to build 
before we can build it”

• classical engineering viewpoint

• leads to waterfall process

• … but is this realistic for today’s systems?



In our Course

• Gather Requirements with few (≤ 3) 
iterations

• Gather UI Design with several (≥ 3) 
iterations



Topics in  
Requirements Analysis

• Identify Stakeholders

• Elicit Requirements

• Identify Requirements

• Prototypes



Stakeholders

• Persons or organizations who…

• have a valid interest in the system

• are affected by the system



Stakeholders

• anyone who operates the system  
(normal and maintenance operators)

• anyone who benefits from the system 
(functional, political, financial and social beneficiaries)

• anyone involved in purchasing or 
procuring the system



Stakeholders

• organizations which regulate aspects of the 
system 
(financial, safety, and other regulators)

• organizations responsible for systems which 
interface with the system under design

• people or organizations opposed to the 
system 
(negative stakeholders)



Elicit Requirements

• Interviews are the best way to elicit 
requirements

• Explore requirements systematically

• Sounds simple – but is the hardest part!



Why is Elicitation hard?

• Problems of scope  
What is the boundary of the system? • What details are 
actually required?

• Problems of understanding 
Users do not know what they want • don’t know what is 
needed • have a poor understanding of their computing 
environment • don’t have a full understanding of their 
domain • omit “obvious” stuff • are ambiguous

• Problems of volatility 
Requirements change over time



Identify Requirements

• Types of requirements 
Functional requirements • Nonfunctional requirements • 
Constraints

• Contract-style requirements

• Use cases (user stories)



Types of Requirements



Functional 
Requirements

• An action the product must take to be 
useful

The product shall allow to track 
individual payments of coffee servings



Nonfunctional 
Requirements

• A property or quality the product must have

The product shall be accessible in 
multiple languages 

(such as German and English)



Constraints

• Global requirements – on the project or 
the product

The product shall be available before 
March 1st.



Constraints

• Global requirements frequently include 
safety and security requirements

The product shall pose 
no danger, risk, or injury to its users.



Contract Style



Contract Style

Classify product features as

• Must-have features 
“The product must conform to accessibility guidelines”

• May-have features 
“The product may eventually be voice-controlled”

• Must-not-have features 
“The product supports only one language”

Be explicit about must-not-have features!



Contract Style

• Provide a contract between sponsors and 
developers

• Can run to hundreds of pages

• Abstract all requirements, with little 
context





Contract Style

love it hate it



Use Case

• An actor is something that can act – a 
person, a system, or an organization

• A scenario is a specific sequence of actions 
and interactions between actors 
(where at least one actor is a system)

• A use case is a collection of related 
scenarios – successful and failing ones

• Useful for clients as well as for developers



Actors and Goals

• What are the boundaries of the system?  
Is it the software, hardware and software, 
also the user, or a whole organization?

• Who are the primary actors – i.e., the 
stakeholders?

• What are the goals of these actors?

• Describe how the system fulfills these 
goals (including all exceptions)



Example: SafeHome



Initial Scenario
Use case: display camera views  
Actor: homeowner  
 
If I’m at a remote location, I can use any PC with 
appropriate browser software to log on to the SafeHome 
Web site.  I enter my user ID and two levels of 
passwords and, once I’m validated, I have access to all 
the functionality.  To access a specific camera view, I 
select “surveillance” and then “select a camera”.  
Alternatively, I can look at thumbnail snapshots from all 
cameras by selecting “all cameras”.  Once I choose a 
camera, I select “view”…



Refined Scenario
Use case: display camera views  
Actor: homeowner 

1. The homeowner logs on to the Web Site

2. The homeowner enters his/her user ID

3. The homeowner enters two passwords

4. The system displays all major function buttons

5. The homeowner selects “surveillance” button

6. The homeowner selects “Pick a camera”…



Alternative Interactions

• Can the actor take some other action at 
this point?

• Is it possible that the actor encounters 
some error condition?  If so, which one?

• Is it possible that some other behavior is 
encountered?  If so, which one?

Exploring alternatives is the key  
to successful requirements analysis!



Full Use Case









Full Use Case



What we expect
1. A set of requirements  

contract style • ≤4 pages • safety and security are musts

2. A set of use cases  
Pressman style • ~10–20 pages

3. A GUI design  
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models 
covering all “must-have” and most “may-have” use cases

5. An executable prototype  
covering all “must-have” use cases
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What we expect

We will calibrate all contracts 
to result in similar effort  

across all projects



Martin Glinz, RE Guru, on Requirements Engineering



Summary
What we expect

1. A set of requirements  
contract style • ≤4 pages • safety and security are musts

2. A set of use cases  
Pressman style • ~10–20 pages

3. A GUI design  
covering all “must-have” and most “may-have” use cases

4. Architectural models and data models 
covering all “must-have” and most “may-have” use cases

5. An executable prototype  
covering all “must-have” use cases


